MG Chemicals UK Limited Version No: A-2.00 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Issue Date: 08/12/2021 Revision Date: 08/12/2021 L.REACH.GB.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking ### 1.1. Product Identifier | Product name | 4351 | | |-------------------------------|---|--| | Synonyms | SDS Code: 4351; 4351-50ML, 4351-1L, 4351-4L, 4351-20L UFI:YAC0-P0RJ-P00E-Q6CX | | | Other means of identification | Thinner 1 | | ### 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | mild thinner and paint remover for coatings and paints | | |--------------------------|--|--| | Uses advised against | Not Applicable | | # 1.3. Details of the supplier of the safety data sheet | Registered company name | MG Chemicals UK Limited MG Chemicals (Head office) | | | | |-------------------------|---|--|--|--| | Address | Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada | | | | Telephone | +(44) 1663 362888 | +(1) 800-201-8822 | | | | Fax | Not Available +(1) 800-708-9888 | | | | | Website | Not Available | www.mgchemicals.com | | | | Email | sales@mgchemicals.com Info@mgchemicals.com | | | | # 1.4. Emergency telephone number | Association / Organisation | Verisk 3E (Access code: 335388) | | |-----------------------------------|---------------------------------|--| | Emergency telephone numbers | +(44) 20 35147487 | | | Other emergency telephone numbers | +(0) 800 680 0425 | | # **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classified according to
GB-CLP Regulation, UK SI
2019/720 and UK SI 2020/1567
[1] | H336 - Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, H225 - Flammable Liquids Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2 | |--|---| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | # 2.2. Label elements Hazard pictogram(s) Signal word Dange # Hazard statement(s) | H336 | May cause drowsiness or dizziness. | | |------|-------------------------------------|--| | H225 | Highly flammable liquid and vapour. | | | H319 | Causes serious eye irritation. | | # Supplementary statement(s) EUH066 Repeated exposure may cause skin dryness or cracking. # Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | |------|--|--| | P271 | Use only outdoors or in a well-ventilated area. | | | P240 | Ground and bond container and receiving equipment. | | | P241 | lse explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | P242 | Use non-sparking tools. | | | P243 | Take action to prevent static discharges. | | | P261 | Avoid breathing mist/vapours/spray. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | | | # Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | |----------------|---|--| | P305+P351+P338 | F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # 2.3. Other hazards | isopropanol | Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply) | |-----------------|---| | n-butyl acetate | Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply) | # **SECTION 3 Composition / information on ingredients** # 3.1.Substances See 'Composition on ingredients' in Section 3.2 # 3.2.Mixtures | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | Nanoform Particle
Characteristics | |--|---|-------------------------|--|--------------------------------------| | 1.67-63-0
2.200-661-7
3.603-117-00-0
4.Not Available | 75-85 | isopropanol | Flammable Liquids Category 2, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H225, H319, H336 [2] | Not Available | | 1.123-86-4
2.204-658-1
3.607-025-00-1
4.Not Available | 22-25 | n-butyl
acetate
* | Flammable Liquids Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H226, H336, EUH066 [2] | Not Available | | Legend: | 1. Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties | | | | # **SECTION 4 First aid measures** | 4.1. Description of first aid mea | asures | |-----------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. | | | Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | |-----------|--| | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | ### 4.2 Most important symptoms and effects, both acute and delayed See Section 11 # 4.3. Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred
after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters: ### BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - Monitor and treat, where necessary, for pulmonary oedema . - Monitor and treat, where necessary, for shock. - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. - Give activated charcoal. #### ADVANCED TREATMENT Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - ▶ Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. # EMERGENCY DEPARTMENT - Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph. - Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome. - Consult a toxicologist as necessary BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 For acute or short term repeated exposures to isopropanol: - Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access - Papid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins, post-ingestion. - There are no antidotes. - Management is supportive. Treat hypotension with fluids followed by vasopressors. - Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes - Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding. # **SECTION 5 Firefighting measures** # 5.1. Extinguishing media - Alcohol stable foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - ► Water spray or fog Large fires only. # 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc, as ignition may result # 5.3. Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). Fire Fighting - Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools. - Do not approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. - Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - Vapour may travel a considerable distance to source of ignition. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. # **SECTION 6 Accidental release measures** Fire/Explosion Hazard # 6.1. Personal precautions, protective equipment and emergency procedures See section 8 ### 6.2. Environmental precautions See section 12 ### 6.3. Methods and material for containment and cleaning up | Remove | all | ignition | sources | |--------|-----|----------|---------| |--------|-----|----------|---------| # **Minor Spills** - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - Contain and absorb small quantities with vermiculite or other absorbent material. - ▶ Collect residues in a flammable waste container. #### Chemical Class: ester and ethers For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE | ANK | APPLICATION | COLLECTION | LIMITATIONS | |-----------------|-----|-------------|------------|-------------| |-----------------|-----|-------------|------------|-------------| # LAND SPILL - SMALL | cross-linked polymer - particulate | 1 | shovel | shovel | R, W, SS | |------------------------------------|---|--------|-----------|---------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 2 | shovel | shovel | R,I, P | | wood fiber - particulate | 3 | shovel | shovel | R, W, P, DGC | | wood fiber - pillow | 3 | throw | pitchfork | R, P, DGC, RT | | treated wood fiber - pillow | 3 | throw | pitchfork | DGC, RT | # LAND SPILL - MEDIUM | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | cross-linked polymer - pillow | 2 | throw | skiploader | R, DGC, RT | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | | wood fiber - particulate | 4 | blower | skiploader | R, W, P, DGC | # **Major Spills** #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Chemical Class: alcohols and glycols For release onto land: recommended sorbents listed in order of priority. | SORBENT RANK APPLICATION | COLLECTION | LIMITATIONS | |--------------------------|------------|-------------| |--------------------------|------------|-------------| # LAND SPILL - SMALL | cross-linked polymer - particulate | 1 | shovel | shovel | R, W, SS | |------------------------------------|---|--------|-----------|---------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 2 | shovel | shovel | R,I, P | | wood fiber - pillow | 3 | throw | pitchfork | R, P, DGC, RT | | treated wood fiber - pillow | 3 | throw | pitchfork | DGC, RT | |-----------------------------|---|-------|-----------|---------------| | foamed glass - pillow | 4 | throw | pichfork | R, P, DGC, RT | #### LAND SPILL - MEDIUM | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | polypropylene - particulate | 2 | blower | skiploader | W, SS, DGC | | sorbent clay - particulate | 2 | blower | skiploader | R, I, W, P, DGC | | polypropylene - mat | 3 | throw | skiploader | DGC, RT | | expanded mineral - particulate | 3 | blower | skiploader | R, I, W, P, DGC | | polyurethane - mat | 4 | throw | skiploader | DGC, RT | ### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - Clear area of personnel and move upwind. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - ► Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse /absorb vapour. - ► Contain spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - Collect recoverable product into labelled containers for recycling. - ▶ Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. # 6.4. Reference to other sections Personal Protective Equipment advice is
contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** # 7.1. Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights, heat or ignition sources. - ► When handling, **DO NOT** eat, drink or smoke. - Vapour may ignite on pumping or pouring due to static electricity. - DO NOT use plastic buckets - ▶ Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - ► Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - DO NOT allow clothing wet with material to stay in contact with skin ### Fire and explosion protection See section 5 # Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. # Other information Safe handling - Keep containers securely sealed. - Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ### ▶ DO NOT use aluminium or galvanised containers Packing as supplied by manufacturer. ▶ Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labelled and free from leaks For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable containe ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. n-Butyl acetate: reacts with water on standing to form acetic acid and n-butyl alcohol reacts violently with strong oxidisers and potassium tert-butoxide is incompatible with caustics, strong acids and nitrates b dissolves rubber, many plastics, resins and some coatings Isopropanol (syn: isopropyl alcohol, IPA): forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium reacts with phosphorus trichloride forming hydrogen chloride gas reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium Storage incompatibility tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane attacks some plastics, rubber and coatings reacts with metallic aluminium at high temperature ► may generate electrostatic charges Alcohols ▶ are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment Esters react with acids to liberate heat along with alcohols and acids. Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products. Heat is also generated by the interaction of esters with caustic solutions. ▶ Flammable hydrogen is generated by mixing esters with alkali metals and hydrides. Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat. Esters may be incompatible with aliphatic amines and nitrates Avoid strong acids, bases ### 7.3. Specific end use(s) See section 1.2 # SECTION 8 Exposure controls / personal protection ### 8.1. Control parameters | Ingredient | DNELs
Exposure Pattern Worker | PNECs
Compartment | |-----------------|---|---| | isopropanol | Dermal 888 mg/kg bw/day (Systemic, Chronic) Inhalation 500 mg/m³ (Systemic, Chronic) Dermal 319 mg/kg bw/day (Systemic, Chronic) * Inhalation 89 mg/m³ (Systemic, Chronic) * Oral 26 mg/kg bw/day (Systemic, Chronic) * | 140.9 mg/L (Water (Fresh)) 140.9 mg/L (Water - Intermittent release) 140.9 mg/L (Water (Marine)) 552 mg/kg sediment dw (Sediment (Fresh Water)) 552 mg/kg sediment dw (Sediment (Marine)) 28 mg/kg soil dw (Soil) 2251 mg/L (STP) 160 mg/kg food (Oral) | | n-butyl acetate | Dermal 7 mg/kg bw/day (Systemic, Chronic) Inhalation 48 mg/m³ (Systemic, Chronic) Inhalation 300 mg/m³ (Local, Chronic) Dermal 11 mg/kg bw/day (Systemic, Acute) Inhalation 600 mg/m³ (Systemic, Acute) Inhalation 600 mg/m³ (Local, Acute) Dermal 3.4 mg/kg bw/day (Systemic, Chronic) * Inhalation 12 mg/m³ (Systemic, Chronic) * Oral 2 mg/kg bw/day (Systemic, Chronic) * Inhalation 35.7 mg/m³ (Local, Chronic) * Dermal 6 mg/kg bw/day (Systemic, Acute) * Inhalation 300 mg/m³ (Systemic, Acute) * Inhalation 300 mg/m³ (Local, Acute) * Inhalation 300 mg/m³ (Local, Acute) * | 0.18 mg/L (Water (Fresh)) 0.018 mg/L (Water - Intermittent release) 0.36 mg/L (Water (Marine)) 0.981 mg/kg sediment dw (Sediment (Fresh Water)) 0.098 mg/kg sediment dw (Sediment (Marine)) 0.09 mg/kg soil dw (Soil) 35.6 mg/L (STP) | * Values for General Population # Occupational Exposure Limits (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--|-----------------|-----------------|---------------------|----------------------|---------------|---------------| | UK Workplace Exposure Limits (WELs) | isopropanol | Propan-2-ol | 400 ppm / 999 mg/m3 | 1250 mg/m3 / 500 ppm | Not Available | Not Available | | EU Consolidated List of
Indicative Occupational
Exposure Limit Values (IOELVs) | n-butyl acetate | n-Butyl acetate | 50 ppm / 241 mg/m3 | 723 mg/m3 / 150 ppm | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | n-butyl acetate | Butyl acetate | 150 ppm / 724 mg/m3 | 966 mg/m3 / 200 ppm | Not Available | Not Available | ### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------|---------------|---------------|---------------| | isopropanol | 400 ppm | 2000* ppm | 12000** ppm | | n-butyl acetate | Not Available | Not Available
| Not Available | | Ingredient | Original IDLH | Revised IDLH | |-----------------|---------------|---------------| | isopropanol | 2,000 ppm | Not Available | | n-butyl acetate | 1,700 ppm | Not Available | #### MATERIAL DATA For n-butyl acetate Odour Threshold Value: 0.0063 ppm (detection), 0.038-12 ppm (recognition) Exposure at or below the recommended TLV-TWA is thought to prevent significant irritation of the eyes and respiratory passages as well as narcotic effects. In light of the lack of substantive evidence regarding teratogenicity and a review of acute oral data a STEL is considered inappropriate. Odour Safety Factor(OSF) OSF=3.8E2 (n-BUTYL ACETATE) Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition) Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol # 8.2. Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | | |---|------------------------------------|--| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | | ### 8.2.1. Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### 8.2.2. Personal protection # Eye and face protection Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### For esters: ▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term # use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ### Body protection Other protection Hands/feet protection ### See Other protection below - Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit - Ensure there is ready access to a safety shower - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for
permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. # Recommended material(s) # GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: 4351 Thinner 1 | Material | CPI | |----------|-----| |----------|-----| ### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum | Half-Face | Full-Face | Powered Air | | |------------------|-----------|-----------|-------------|--| | | | | | | Protection Factor up to 5 x ES up to 25 x ES up to 50 x ES 50+ x ES ^ - Full-face | PE/EVAL/PE | A | |-------------------|---| | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE | С | | PVA | С | | PVC | С | | TEFLON | С | | VITON/BUTYL | С | | * | CPI - | Chemwatch | Performance | Index | |---|-------|-----------|-------------|-------| | | | | | | A: Best Selection NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. | NEOPRENE/NATURAL | С | dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = | |------------------|---|--| | NITRILE | С | Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) | | NITRILE+PVC | С | Cartridge respirators should never be used for emergency ingress or in areas of | | PE | С | unknown vapour concentrations or oxygen content. | | PVA | С | ▶ The wearer must be warned to leave the contaminated area immediately on | a immediately on Respirator Air-line* A-AUS / Class 1 A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur Respirator A-2 A-3 Air-line** detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Respirator Class 1 A-PAPR-2 A-PAPR-AUS / ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # 8.2.3. Environmental exposure controls See section 12 # **SECTION 9 Physical and chemical properties** # 9.1. Information on basic physical and chemical properties | Appearance | Colorless | | | | |--|--|---|---------------|--| | Physical state | Liquid Relative density (Water = 1) 0.80 | | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 407 | | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | <3 | | | Initial boiling point and boiling range (°C) | >81.8 | Molecular weight (g/mol) | Not Available | | | Flash point (°C) | 12 | Taste | Not Available | | | Evaporation rate | 1.5 BuAC = 1 | Explosive properties | Not Available | | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | | Upper Explosive Limit (%) | 9 | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit (%) | 1.7 | Volatile Component (%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | Solubility in water | Partly miscible | pH as a solution (%) | Not Available | | | Vapour density (Air = 1) | ≥2 | VOC g/L | Not Available | | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | | Particle Size | Not Available | | | | # 9.2. Other information Not Available B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ### **SECTION 10 Stability and reactivity** | 10.1.Reactivity | See section 7.2 | |--|--| | 10.2. Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | ### **SECTION 11 Toxicological information** ### 11.1. Information on toxicological effects Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression, headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from massive exposures. #### Inhaled Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well. The material has **NOT** been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols. The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Swallowing of the
liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. ### Ingestion Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema. Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, gastrointestinal tract irritation, and inactivity or anaesthesia. Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is | | approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; gastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea. There is evidence that a slight tolerance to isopropanol may be acquired. | | | | |-----------------|--|--|---|--| | Skin Contact | Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511ipa The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: Produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or Produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. | | | | | Еуе | Eye contact may cause tearing or blurring of vision. Limited evidence or practical experience suggests, that the mat may produce significant ocular lesions which are present twenty contact may cause significant inflammation with pain. Corneal in prompt and adequate. | Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Limited evidence or practical experience suggests, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye
contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure may cause severe inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva | | | | Chronic | Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals. There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol. Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ens | | | | | | TOXICITY | IDD | ITATION | | | 4351 Thinner 1 | Not Available | | Available | | | | | | | | | | TOXICITY | | RRITATION | | | isopropanol | Dermal (rabbit) LD50: 12800 mg/kg ^[2] | | Eye (rabbit): 10 mg - moderate | | | ізоргораног | Inhalation(Mouse) LC50; 53 mg/L4h ^[2] | | Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100mg/24hr-moderate | | | | Oral (Mouse) LD50; 3600 mg/kg ^[2] | | Skin (rabbit): 500 mg - mild | | | | | | | | | | TOXICITY | IRRITATION | | | | | Dermal (rabbit) LD50: 3200 mg/kg ^[2] | Eye (human): | 300 mg | | | | Inhalation(Rat) LC50; 0.74 mg/l4h ^[2] | Eye (rabbit): 2 | 0 mg (open)-SEVERE | | | n-butyl acetate | Oral (Rabbit) LD50; 3200 mg/kg ^[2] | Eye (rabbit): 2 | 0 mg/24h - moderate | | | | | Eye: no advers | se effect observed (not irritating) ^[1] | | | | | Skin (rabbit): 5 | 500 mg/24h-moderate | | | | | Skin: no adver | rse effect observed (not irritating) ^[1] | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | #### ISOPROPANOL The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. ### N-BUTYL ACETATE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. #### For isopropanol (IPA): **Acute toxicity:** Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. # 4351 Thinner 1 & ISOPROPANOL Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment # 4351 Thinner 1 & N-BUTYL ACETATE Generally,linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated
by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic. The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods Internation Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998 | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification — Data available to make classification # 11.2.1. Endocrine Disruption Properties Not Available # **SECTION 12 Ecological information** #### 12.1. Toxicity | 4351 Thinner 1 | Endpoint | Test Duration (hr) | Species | Value | Sour | ce | |-----------------|-----------------------|-------------------------------|-------------------------------|---------------|-----------------|-------------| | | Not Available | Not Available | Not Available | Not Available | Not A | vailable | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | EC50(ECx) | 24h | Algae or other aquatic plan | ts | 0.011mg/L | 4 | | | EC50 | 72h | Algae or other aquatic plan | ts | >1000mg/l | 1 | | isopropanol | LC50 | 96h | Fish | | 4200mg/l | 4 | | | EC50 | 48h | Crustacea | | 7550mg/l | 4 | | | EC50 | 96h | Algae or other aquatic plants | | >1000mg/l | 1 | | | | | | | | | | | | | | | | | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | Endpoint
EC50(ECx) | Test Duration (hr) 96h | Species
Fish | | Value
18mg/l | Source
2 | | n-butyl acetate | • | , , | • | nts | | | | n-butyl acetate | EC50(ECx) | 96h | Fish | nts | 18mg/l | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For isopropanol (IPA): log Kow:-0.16-0.28 Half-life (hr) air:33-84 Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97% ThOD : 2.4 BOD 20: >70% * [Akzo Nobel] # **Environmental Fate** Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota. IPA is expected to volatilise slowly from water based on a calculated Henry's Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days). IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log IPA has the potential to leach through the soil due to its low soil adsorption In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA. ### Ecotoxicity: IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms. Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures. ### **Toxicity to Plants** Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test. For n-butyl acetate: Half-life (hr) air : 144 Half-life (hr) H2O surface water : 178-27156 Henry's atm m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7% COD: 78% ThOD: 2.207 BCF: 4-14 # Environmental Fate: TERRESTRIAL FATE: An estimated Koc value of 200 determined from a measured log Kow of 1.78 indicates that n-butyl acetate is expected to have moderate mobility in soil. Volatilisation of n-butyl acetate is expected from moist soil surfaces given its Henry's Law constant of 2.8x10-4 atm-cu m/mole. Volatilisation from dry soil surfaces is expected based on a measured vapor pressure of 11.5 mm Hg. Using a standard BOD dilution technique and a sewage inoculum, theoretical BODs of 56 % to 86 % were observed during 5-20 day incubation periods, which suggests that n-butyl acetate may biodegrade in soil. AQUATIC FATE: An estimated Koc value indicates that n-butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilise from water surfaces based on a Henry's Law constant of 2.8x10-4 atm-cu m/mole. Estimated half-lives for a model river and model lake are 7 and 127, hours respectively. An estimated BCF value of 10 based on the log Kow, suggests that bioconcentration in aquatic organisms is low. Using a filtered sewage seed, 5-day and 20-day theoretical BODs of 58 % and 83 % were measured in freshwater dilution tests; 5-day and 20-day theoretical BODs of 40 % and 61 % were measured in salt water. A 5-day theoretical BOD of 56.8 % and 51.8 % were measured for n-butyl acetate in distilled water and seawater, respectively. Hydrolysis may be an important environmental fate for this compound based upon experimentally determined hydrolysis half-lives of 114 and 11 days at pH 8 and 9 respectively. ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, n-butyl acetate, which has a vapour pressure of 11.5 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days #### **Environmental fate:** Fish LC50 (96 h, 23 C): island silverside (Menidia beryllina) 185 ppm (static bioassay in synthetic seawater, mild aeration applied after 24 h); bluegill sunfish (Lepomis macrochirus) 100 ppm (static bioassay in fresh water, mild aeration applied after 24 h) Fish EC50 (96 h): fathead minnow (Pimephales promelas) 18 mg/l (affected fish lost equilibrium prior to death) Daphnia LC50 (48 h): 44 ppm Algal LC50 (96 h): Scenedesmus 320 ppm DO NOT discharge into sewer or waterways. ### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------|---------------------------|--------------------------| | isopropanol | LOW (Half-life = 14 days) | LOW (Half-life = 3 days) | | n-butyl acetate | LOW | LOW | #### 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |-----------------|---------------------| | isopropanol | LOW (LogKOW = 0.05) | | n-butyl acetate | LOW (BCF =
14) | ### 12.4. Mobility in soil | Ingredient | Mobility | |-----------------|-------------------| | isopropanol | HIGH (KOC = 1.06) | | n-butyl acetate | LOW (KOC = 20.86) | #### 12.5. Results of PBT and vPvB assessment | | P | В | Т | | |-------------------------|---------------|---------------|-------|----------| | Relevant available data | Not Available | Not Available | Not A | vailable | | PBT | × | × | × | | | vPvB | × | × | × | | | PBT Criteria fulfilled? | | | No | | | vPvB | | | | No | ### 12.6. Endocrine Disruption Properties Not Available # 12.7. Other adverse effects Not Available # **SECTION 13 Disposal considerations** ### 13.1. Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ► Recycling Not Available Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. # Product / Packaging disposal - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # Sewage disposal options Not Available ## **SECTION 14 Transport information** Waste treatment options # Labels Required Limited quantity: 4351-50ML, 4351-1L, 4351-4L # Land transport (ADR-RID) | 14.1. UN number 1263 14.2. UN proper shipping name PAINT or PAINT RELATED MATERIAL 14.3. Transport hazard class(es) Class 3 Subrisk Not Applicable | |--| | 14.3. Transport hazard Class 3 | | 14.5. Halisport lazard | | · · · · · · · · · · · · · · · · · · · | | 14.4. Packing group | | 14.5. Environmental hazard Not Applicable | | Hazard identification (Kemler) 33 | | Classification code F1 | | 14.6. Special precautions for Hazard Label 3 | | user Special provisions 163 367 640C 650 640D | | Limited quantity 5 L | | Tunnel Restriction Code 2 (D/E) | # Air transport (ICAO-IATA / DGR) | iii transport (ICAO-IATA / DGI | -, | | | | | |------------------------------------|---|----------------------------|-------------|--|--| | 14.1. UN number | 1263 | | | | | | 14.2. UN proper shipping name | PAINT or PAINT RELATED MATERIAL | | | | | | | ICAO/IATA Class | 3 | | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subrisk | orisk Not Applicable | | | | | , | ERG Code 3L | | | | | | 14.4. Packing group | II . | | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | | Special provisions | | A3 A72 A192 | | | | | Cargo Only Packing Instructions | | 364 | | | | | Cargo Only Maximum Qty / Pack | | 60 L | | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 353 | | | | user | Passenger and Cargo Maximum Qty / Pack | | 5 L | | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y341 | | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 1 L | | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1263 | | | |------------------------------------|--|--|--| | 14.2. UN proper shipping name | PAINT or PAINT RELATED MATERIAL | | | | 14.3. Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | 14.4. Packing group | 1 | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | EMS Number F-E , S-E Special provisions 163 367 Limited Quantities 5 L | | | # Inland waterways transport (ADN) | 14.1. UN number | 1263 | | |----------------------------------|---------------------------------|--| | 14.2. UN proper shipping name | PAINT or PAINT RELATED MATERIAL | | | 14.3. Transport hazard class(es) | 3 Not Applicable | | | II | | |---------------------|---| | Not Applicable | | | Classification code | F1 | | Special provisions | 163; 367; 640C; 640D; 650 | | Limited quantity | 5 L | | Equipment required | PP, EX, A | | Fire cones number | 1 | | | Not Applicable Classification code Special provisions Limited quantity Equipment required | # 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------|---------------| | isopropanol | Not Available | | n-butyl acetate | Not Available | ### 14.9. Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-----------------|---------------| | isopropanol | Not Available | | n-butyl acetate | Not Available | ### **SECTION 15 Regulatory information** # 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture ### isopropanol is found on the following regulatory lists EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ### n-butyl acetate is found on the following regulatory lists EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. # 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. ### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (isopropanol; n-butyl acetate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 08/12/2021 | |---------------|------------| | Initial Date | 17/10/2013 | # Full text Risk and Hazard codes H226 Flammable liquid and vapour. #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short
Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances # **Reason For Change** A-2.00 - Modification to the safety data sheet and added UFI number.